
ETMAG LECTURE 4

Limits of sequences



Subsequences.

Definition. If (𝑎𝑛)𝑛=1
∞ is a sequence, then for every increasing 

sequence of natural numbers (𝑛𝑘)𝑘=1
∞ the sequence 

(𝑏𝑘)𝑘=1
∞ = (𝑎𝑛𝑘)𝑘=1

∞ is called a subsequence of (𝑎𝑛)𝑛=1
∞ . 

Usually, we simply write "(𝑎𝑛𝑘) is a subsequence of (𝑎𝑛)".

Thus, a subsequence of (𝑎𝑛) is a sequence obtained by the 
removal from (𝑎𝑛) some (possibly none, possibly infinitely 
many, but leaving infinitely many) of its terms without 
changing the order of the remaining terms. 

Examples. 

1. Every sequence is its own subsequence.

2. (1,2,3,4) is not a subsequence of (𝑛) because it is finite.

3. (3,1,5,11,7,9, …etc.) is not a subsequence of 𝑛 . Odd 
positive integers do form an infinite subset of ℕ, but the 
order of terms is messed-up.



4. (1,3,5,7,9, … etc.) is a subsequence of 𝑛 defined by  
𝑛𝑘 = 2𝑘 + 1 – an increasing sequence of odd natural 
numbers.

5. (pn) = (2,3,5,7,11,13, … (all primes)) is a subsequence of 
𝑛 we cannot provide the explicit formula for 𝑛𝑘 (other 

than 𝑛𝑘 is the k-th prime).

6. (𝑎𝑝𝑛) is the subsequence of (an) of all terms whose indices 

are primes. This yields (𝑎2, 𝑎3, 𝑎5, 𝑎7, 𝑎11, … 𝑒𝑡𝑐).

7. The sequence(𝑎2𝑛) is the subsequence of (𝑎𝑛) consisting 
of all even-subscripted terms.



Definition.

Let 𝑓: 𝑋 → 𝑌 be a function and let A be a subset A of X . The 

restriction of 𝑓 to A is the function 𝑓ȁ𝐴: 𝐴 → 𝑌 whose domain is A

and for each a A 𝑓ȁ𝐴 𝑎 = 𝑓(𝑎).
Example.

𝑥2ȁ[0;∞) becomes a 1-1 function. 

The solid red line is the graph of the function f(x)=x2 restricted to <0;). The restricted function is 
1-1 (the original is not), hence invertible. The blue line is the graph of its inverse, 𝑥.

The spotted red line is the graph of x2 restricted to (−∞; 0>. (Picture from Wikipedia).



Since a sequence is a function from ℕ into ℝ you may think of a 
subsequence of a sequence as a restriction of the sequence to an 
infinite subset of ℕ. („As a what of what to what?!” – Winnie the Pooh).

Comprehension. 

What type of sequence is 

(a) 𝑎2𝑛 if 𝑎𝑛 is an arithmetic sequence with the increment d,

(b) 𝑎2𝑛 if 𝑎𝑛 is a geometric sequence with the quotient q,

(c) 𝑎2𝑛 𝑛=0
∞ if 𝑎𝑛 is the arithmetic sequence with the increment 

d and a1=d?



Limits of sequences

Definition.
Let (𝑎𝑛) be a sequence. We say that the sequence is convergent
if and only if there exists a number L such that

∀𝜀 > 0 ∃𝑝 ∈ ℕ ∀𝑛 > 𝑝 𝑎𝑛 − 𝐿 < 𝜀.

We call L the limit of (𝑎𝑛), in symbols 𝐿 = lim
𝑛→∞

𝑎𝑛, and we 

say that 𝑎𝑛 converges to L.

If no such number exists, the sequence is called divergent.



The standard student reaction to the definition is "does it have 
to be this complicated". The standard teacher's answer is YES. 
We cannot say "the greater n the closer we are to L" because 
there may be "local fluctuations" on our approach to L. Like 
when you drive somewhere there might be detours, bridges to 
cross, MacDonalds' to visit and other obstacles and temptations 
which cause your distance from the destination (measured as 
the crow flies) to temporarily increase. But eventually you get 
there. Hopefully.

Which is to say that dn= 𝑎𝑛 − 𝐿 decreases to zero is not good 
enough.



Notice that the sequence is convergent to L if, whenever 
somebody chooses an >0, you can find such an index p that 
all terms of the sequence with indices greater than p belong to 
the interval (𝐿 − 𝜀; 𝐿 + 𝜀). In other words, only finitely many 
terms of (an) may sit outside this interval – namely  
𝑎1, 𝑎2, … and 𝑎𝑝 at the most.



Example 1.

Consider the sequence 𝑎𝑛 =
1

𝑛
. Intuitively,  

1

𝑛
approaches 0 as n

approaches ∞.

Formally, choose (but do not disclose) 𝜀 > 0. Can we find 𝑝 ∈ ℕ

such that 𝑛 > 𝑝 guarantees 𝑎𝑛 − 0 = 1/𝑛 =
1

𝑛
< 𝜀, 

regardless of the actual value of 𝜀? Certainly, this hypothetical p
must depend on 𝜀.
1

𝑛
< 𝜀 is equivalent to 

1

𝜀
< 𝑛. Hence, if we put p to be any 

natural number greater than 
1

𝜀
, for example 

1

𝜀
then for every 

𝑛 > 𝑝 we obtain 
1

𝑛
< 𝜀, as required. Conclusion:

lim
𝑛→∞

1

𝑛
= 0

In this example, the distance between 𝑎𝑛 and the limit L
decreases steadily to 0.



Example 2.

Consider the sequence 𝑎𝑛 =
1

𝑛
+

2 −1 𝑛

𝑛
. The initial terms of the

sequence look like this:−1, 
3

2
, −

1

3
, 
3

4
,−

1

5
, 
3

6
, −

1

7
, 
3

8
,  etc. As you 

see, the distance to 0 (which is suspected of being the(?) limit) 
do not decrease to 0.

Again, choose (and keep secret) some 𝜀 > 0. Can we find 𝑝 ∈ ℕ
such that 𝑛 > 𝑝 guarantees 𝑎𝑛 − 0 =< 𝜀, regardless of the 

actual value of 𝜀? 𝑎𝑛 − 0 = ȁ
1

𝑛
+

2 −1 𝑛

𝑛
ȁ ≤

1

𝑛
+

2 −1 𝑛

𝑛
=

1

𝑛
+

2

𝑛
=

3

𝑛
. As before, 

3

𝑛
< 𝜀 is equivalent to 

3

𝜀
< 𝑛. Hence, if we put p to be any 

natural number greater than 
3

𝜀
, for example 

3

𝜀
then for every 

𝑛 > 𝑝 we obtain 
3

𝑛
< 𝜀, as required, which confirms that:

lim
𝑛→∞

1

𝑛
+

2 −1 𝑛

𝑛
= 0. 



Example 3.
Consider the sequence 𝑎𝑛 = −1 𝑛. Suppose it is convergent to 
some number L. Then, for every positive number 𝜀, in particular 

for 𝜀 =
1

4
, there exists p such that whenever 𝑛 > 𝑝,  

𝑎𝑛 ∈ (𝐿 −
1

4
; 𝐿 +

1

4
). So, if 𝑎𝑛 ∈ (𝐿 −

1

4
; 𝐿 +

1

4
) then 𝑎𝑛+1 ∈

(𝐿 −
1

4
; 𝐿 +

1

4
). But one of 𝑎𝑛 and 𝑎𝑛+1 is 1 and the other is −1. 

They cannot both belong to any interval of length 
1

2
. This proves 

that the sequence is divergent.



FAQ 1. Is it true that a sequence is convergent to L iff for 
every 𝜀 infinitely many of its terms are “𝜀 - close” to L?

Of course not. Look at example 3 above.



FAQ 2. Can a sequence have two (or more) different limits?

Theorem.
For every sequence 𝑎𝑛 , if lim

𝑛→∞
𝑎𝑛 = 𝐿 and lim

𝑛→∞
𝑎𝑛 = 𝐾 then

𝐿 = 𝐾.

Proof. (By contradiction)

Suppose 𝐿 ≠ 𝐾 and take ε =
1

2
ȁ𝐿 − 𝐾ȁ. Obviously, ε > 0. Since 

lim
𝑛→∞

𝑎𝑛 = 𝐿, all but a finite number of an-s belong to the 

interval (𝐿 − ε;L+ ε). Hence, only a finite number of an-s can 
belong to (𝐾 − ε;K+ ε) i.e., an is NOT convergent to K. QED

So, the answer to question 2 is NO.



FAQ 3. Can a convergent sequence have two subsequences 
converging to two different limits?

Theorem.

For every sequence 𝑎𝑛 , lim
𝑛→∞

𝑎𝑛 = 𝐿 iff for every subsequence 

𝑎𝑛𝑘 of 𝑎𝑛 , lim
𝑘→∞

𝑎𝑛𝑘 = 𝐿.

Proof. (⇐) Trivial because "for every subsequence" means, in 
particular, "for the sequence itself".

(⇒) Let ε > 0 and suppose p is such that 𝑎𝑛 − 𝐿 < ε for all 
n>p. Clearly, for every k, nk≥k (because (nk) is an increasing 
sequence of subscripts). Hence, for every k>p also nk>p and 

𝑎𝑛𝑘 − 𝐿 < ε. QED

This means the answer to question 3 is NO.



Theorem 3. (Arithmetic properties of the limit)

If sequences 𝑎𝑛 and (𝑏𝑛) are convergent then:

1. (𝑎𝑛 + 𝑏𝑛) is convergent and 
lim
𝑛→∞

(𝑎𝑛 + 𝑏𝑛) = lim
𝑛→∞

𝑎𝑛 + lim
𝑛→∞

𝑏𝑛

2. lim
𝑛→∞

(𝑎𝑛 − 𝑏𝑛) = lim
𝑛→∞

𝑎𝑛 − lim
𝑛→∞

𝑏𝑛,

3. (𝑎𝑛𝑏𝑛) is convergent and lim
𝑛→∞

(𝑎𝑛 𝑏𝑛) = lim
𝑛→∞

𝑎𝑛 ⋅ lim
𝑛→∞

𝑏𝑛,

4. for every constant c ∈ ℝ, (can) is convergent and lim
𝑛→∞

𝑐𝑎𝑛 = 

𝑐 lim
𝑛→∞

𝑎𝑛

5. (
𝑎𝑛

𝑏𝑛
) is convergent and lim

𝑛→∞
(
𝑎𝑛

𝑏𝑛
) = 

lim
𝑛→∞

𝑎𝑛

lim
𝑛→∞

𝑏𝑛
(if bn≠0 and 

lim
𝑛→∞

𝑏𝑛 ≠0).

In short, arithmetic operations on convergent sequences 
preserve limits, (the limit of the sum is the sum of limits etc.).



Proof. (Part 1). The starting point is, as always, the fundamental 
question, "what the hell must we do". We will apply the definition of 
the limit to the sequence anbn. Denote A = lim

𝑛→∞
𝑎𝑛 and B = lim

𝑛→∞
𝑏𝑛. 

We must show that

∀𝜀 > 0 ∃𝑝𝜖ℕ ∀𝑛𝜖ℕ (𝑝 < 𝑛 ⇒ (𝑎𝑛+𝑏𝑛) − (𝐴 + 𝐵) < 𝜀). 
Now,

𝑎𝑛 + 𝑏𝑛 − (𝐴 + 𝐵) = 𝑎𝑛 − 𝐴 + 𝑏𝑛 − 𝐵 = ≤ 𝑎𝑛 − 𝐴ȁ + ȁ𝑏𝑛 − 𝐵

Since the sequences converge to A and B, respectively, we know 

that there exist 𝑝𝑎 and 𝑝𝑏 such that for 𝑛 > 𝑝𝑎, ȁ𝑎𝑛 − 𝐴ȁ <
𝜀

2
and 

for 𝑛 > 𝑝𝑏, ȁ𝑏𝑛 − 𝐵ȁ <
𝜀

2
. Putting 𝑝 = max(𝑝𝑎, 𝑝𝑏) we obtain that 

for every 𝑛 > 𝑝, ȁ𝑎𝑛 − 𝐴ȁ <
𝜀

2
and ȁ𝑏𝑛 − 𝐵ȁ <

𝜀

2
. Adding the last 

two inequalities we get 𝑎𝑛 − 𝐴ȁ + ȁ𝑏𝑛 − 𝐵 < 𝜀. QED

Similar arguments can be used to prove the remaining parts.

Warning. This is an "if…then" NOT "if and only if" theorem!



Theorem 4 (Limits and inequalities)

If  an is convergent to A and bn to B and there exists k such that for 
every n>k an ≤ bn then A ≤ B. (The order is preserved by the limit).

Outline of a proof by contradiction. Suppose to the contrary, A>B. 

Put 𝜀 =
𝐴−𝐵

2
. There exists p such that for every n>p, 𝑎𝑛 − 𝐴 < 𝜀

and 𝑏𝑛 − 𝐵 < 𝜀. In other words, for every n>p we have

−
𝐴−𝐵

2
< 𝑎𝑛 −𝐴 <

𝐴−𝐵

2
which implies A −

𝐴−𝐵

2
< 𝑎𝑛, so 

𝑨+𝑩

𝟐
< 𝒂𝒏

−
𝐴−𝐵

2
< 𝑏𝑛 − 𝐵 <

𝐴−𝐵

2
hence, 𝑏𝑛 − 𝐵 <

𝐴−𝐵

2
and 𝑏𝑛 <

𝐴+𝐵

2
. The 

red inequalities imply that 𝑏𝑛 < 𝑎𝑛 for infinitely many n-s, contrary 
to our assumption. QED,


